SPUTTER DEPOSITION OF DIELECTRIC FILMS FOR HIGH TEMPERATURE SENSOR APPLICATIONS

H. BARTZSCH, P. FRACH, D. GLÖSS, S. BARTH

INTRODUCTION

• high breakdown field strength,
• high insulation resistivity,
• high area yield,
• high piezoelectric coefficient,
• resistance to aggressive media,
• effective permeation barriers,
• good adaptation of the coefficients of expansion to the substrate
• temperature stability
 • 200°C for application in process control for injection molding
 • 400°C measurements in the combustion chamber
 • 600°C measurements in the exhaust line of combustion engines
 • 800°C for turbine applications

DEPOSITION TECHNOLOGY

• Double Ring Magnetron DRM 400
• film thickness uniformity: up to ±0.5% on 8” substrate by stationary coating
• reactive sputtering from metallic target using closed loop reactive gas control
• high rate deposition of AlN, AlScN films, measured at room temperature on silicon wafer, film thickness 8 µm
• deposition rate of dielectric films 80 ... 250 nm/min

PIEZOELECTRIC AlN AND AlScN FILMS

• high piezoelectric coefficient of AlN
• good insulation strength also at an operation temperature of 400°C
• double ring magnetron DRM 400 for uniform coating of Ø 200 mm (8”) substrates

ELECTRICALLY INSULATING Al2O3, SiO2 AND Si3N4 FILMS

<table>
<thead>
<tr>
<th>Material</th>
<th>Deposition rate [nm/min]</th>
<th>Resistivity [Ω cm]</th>
<th>Breakdown field strength [MV/cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>250</td>
<td>6,3 × 10¹⁴</td>
<td>5.6</td>
</tr>
<tr>
<td>Al2O3</td>
<td>150</td>
<td>2,3 × 10¹⁴</td>
<td>6.2</td>
</tr>
<tr>
<td>Si3N4</td>
<td>80</td>
<td>5,2 × 10¹⁴</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Applications of insulating films

• insulation between metallic sensor body and measurement application
• example: electrical separation between metallic membrane and resistive structure in pressure sensors

SUMMARY

• high rate deposition of AlN, Al2O3, Si3N4 and SiO2 films
• good insulation strength also at an operation temperature of 400°C
• high piezoelectric coefficient of AlN
• improvement of thermal stability of Al2O3 by 5% SiO2 content
• high permeation barrier of the films

APPLICATIONS OF PIEZOELECTRIC AIN FILMS

• energy harvesting
• ultrasonic microscopy with phased array sensors
• pipe surveillance
• BAW components
• temperature stability 1100°C

APPLICATIONS OF INSULATING FILMS

• effective permeation barriers,
• resistance to aggressive media,
• high insulation resistivity,
• high breakdown field strength,
• good adaptation of the coefficients of expansion to the substrate

CORRESPONDING CONTACT
Fraunhofer Institute for Electron Beam and Plasma Technology FEP
Winterbergstraße 28
01277 Dresden, Germany
www.fep.fraunhofer.de

ACKNOWLEDGEMENTS
This work has been partially supported by a Grant-in-Aid for Technology Funding by the European Regional Development Fund (ERDF) 2007-2013 and the State of Saxony. It has also been supported by a Grant-in-Aid for Technology funding by the Federal Ministry of Research and Education (BMBF).