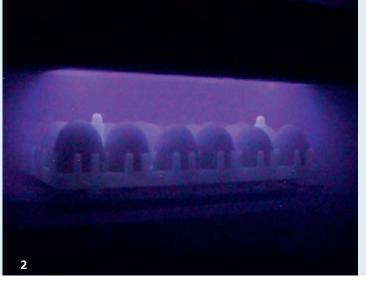


REAMODE


SI

18

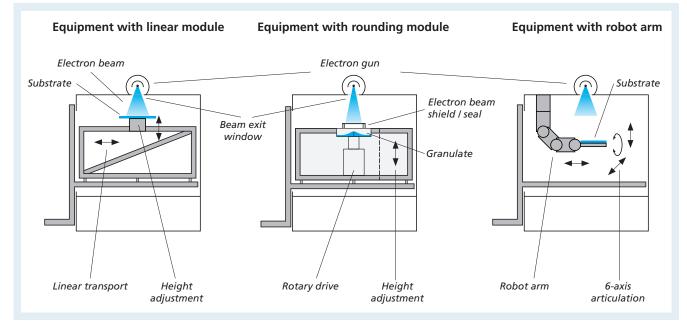
Experimental equipment for modifying organic materials using accelerated electrons

Equipment with linear module

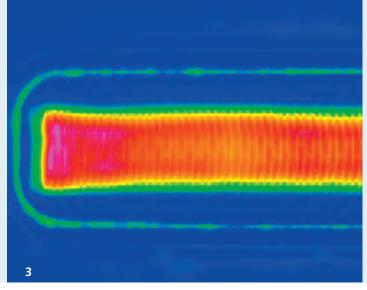
Eggs under electron veil for disinfection

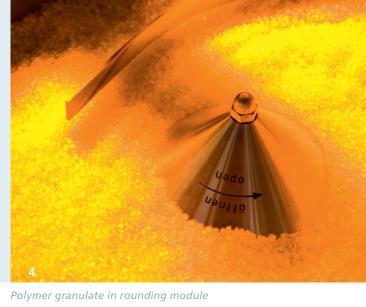
REAMODE

The REAMODE equipment uses an electron beam to modify surfaces for a variety of applications and to sterilize/ disinfect surfaces and products.


The equipment parameters can be adjusted in order to control the penetration depth of the electrons and the intensity of the electron beam. This allows materials to be modified in a customized way.

For example, lacquers can be efficiently cured, polymer surfaces can be modified and crosslinked, and products can be disinfected or sterilized. The equipment has three different transport modules that allow treatment of substrates with 2-D or 3-D geometries, as well as bulk goods.


The substrates can be processed in the equipment under atmospheric pressure, under protective gas atmosphere, and under reduced pressure.


Applications

- Hardening and curing of lacquers, paints, polymer layers and papers
- Modification, crosslinking and grafting of polymer films, surfaces and granulates as well as fibers and fillers
- Degradation of synthetic and biological polymers, like cellulose
- Sterilization/disinfection of surfaces, also inside a packaging
- Germ reduction on surfaces of raw materials and packaging systems
- Modification of natural oils
- Testing, evaluation, and maintenance of electron beam sources

Schematic representation of the REAMODE equipment

Thermographic picture of an electron beam exit window

Our offer

- Feasibility studies and technology development in the area of surface treatment
- Identification of optimum process parameters for your application
- Product development for lacquers and polymer surfaces
- Accompanying chemical, mechanical, and microbiological analysis of surfaces
- Development and realization of new and customized electron beam sources
- Maintenance and repair of electron beam sources

Technical specifications

Electron beam source	max. 2.5 kW at 200 kV
UV beam source – UMEX	max. 3.0 kW
Penetration (treatment) depth	10 200 μm
Dynamic dosing	max. 10,000 kGy × mm/s
Usable chamber size (W × H × D)	900 × 1100 × 1300 mm
Max. electron beam source flange dimensions	1000 × 800 mm
Modular equipment concept	 Linear transport module for 2-D and 3-D
	 product samples up to 300 × 400 × 300 mm
	 substrate speed 0.05 2 m/s
	 load capacity of substrate platform max. 5.0 kg
	 Rounding module for bulk goods with
 rapid module and sample change 	 particle sizes > 500 μm
 adaptable and extendable 	 speed range 200 1000 rpm
	 filling quantity (max. 3.0 kg)
	 Robot arm for 3-D substrates
	load capacity: max. 5.0 kg
	 substrate size up to 350 × 230 × 100 mm
Process conditions	 Different atmospheres, vacuum
	 Process gas (air, CO₂, N₂), inert gas (Ar)
	 Treatment temperature max. 360°C
Process measurement technology	 High resolution IR thermography
	 Various dosimetry systems
	 Optical high dose measurement up to 5000 kGy
	 Online beam monitoring

temperature monitoring and control (chamber, substrate)

Contact

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP Winterbergstr. 28 01277 Dresden, Germany

Contact Prof. Dr. Gösta Mattausch Phone +49 351 2586-202 goesta.mattausch@fep.fraunhofer.de

Dr. Tobias Teichmann Phone +49 351 2586-206 tobias.teichmann@fep.fraunhofer.de

www.fep.fraunhofer.de

Follow us!

We focus on quality and the ISO 9001.

The production of this print product was climate-neutral.

Picture credits

Title: Janek Wieczoreck Finn Hoyer: 1, 4 Fraunhofer FEP: 2,3

