

Fraunhofer Institute for Electron Beam and Plasma Technology FEP

Transparent, scratch-resistant layers on large area substrates

Indoor interior

Technology

- High-rate electron beam evaporation
- Plasma-activation by hollow cathode arc discharge (HAD process)
- Organic modification by combination with PECVD
- High deposition rates on large areas (50 ... 600 nm/s)
- High productivity low cost
- Low thermal load (plastic, e.g. PC, max. temperature < 130°C)
- Wet chemical cleaning of metals prior vacuum processing
- (Pulse) plasma pre-treatment
- Technology development to customized requirements
- Pilot production for metal strips, plastic films (300 mm width) and large sheets (500 mm × 500 mm) in large scale pilot plant MAXI

Applications

- Kitchen
- Indoor interior
- Architecture
- Automotive
- Rail-bound transportation
- Lighting
- Solar thermal absorber
- Photovoltaic

Substrates

- Materials:
 - plastics (e.g. polycarbonate)
 - metals (e.g. stainless steel)
 - glasses (e.g. float glass)
 - ceramics (e.g. tiles)
- Shape:
 - small, medium size and large area flat substrates (sheets, strips, films)
 - simple shaped 3D substrates

Contact

Dr. Bert Scheffel Phone +49 351 2586-243 bert.scheffel@fep.fraunhofer.de

Dr. Stefan Saager Phone +49 351 2586-316 stefan.saager@fep.fraunhofer.de

Fraunhofer Institute for Electron Beam and Plasma Technology FEP

Winterbergstr. 28 01277 Dresden, Germany

www.fep.fraunhofer.de

Characteristics

General:

Transparent, scratch-resistant layers on large area substrates from plastics, metals, glasses and ceramics.

The optical appearance of the surface will not be altered by coating.

Layers:

- Silica based (SiO_x) and alumina based (Al₂O₃) coatings
- Thickness 1 ... 10 μm
- Organic modification by incorporation of carbon
- Improved elasticity
- Incorporation of nano-crystalline Si in the SiO_x layer matrix for extremely high hardness

Hardness of substrates and abrasion-resistant SiO_x layers

Substrate	Hardness of the substrate [GPa]	Hardness of the SiO _x layers [GPa]
Polycarbonate	0.11*	2 3
PET	0.15*	2 3
PMMA	0.18*	2 3
Ferritic steel (St 14)	ca. 1	8 15
High-alloy steel (X5 CrNi 18.10)	3 4	8 15
Float glass	са. б	8 10

Hardness measurement by nano-indentation; * Ball indentation

- **1** Indoor interior
- 2 High abrasion resistance
- 3 Automotive

4 Transparent, hard (ca. 9 GPa) SiO_x layers on glass substrates subjected to the Taber Abraser test. Parameters: Friction wheels CS-10F, 500 g load

We focus on quality and the ISO 9001.

Mechanical properties:

- High hardness (2 ... 15 GPa) compared to substrate (see table)
- High abrasion resistance (see graph, fig. 4)
- Excellent adhesion, even in the presence of moisture (plastic substrates)
- Low intrinsic layer stress
- Elastic and plastic deformability up to 3%
- Stability against temperature cycling
- High corrosion resistance
 - Low fingerprint sensibility

Optical properties:

- High transparency
 (k: 0.001 ... 0.01 @ 550 nm)
- High uniformity of layer thickness