

FRAUNHOFER INSTITUTE FOR ORGANIC ELECTRONICS, ELECTRON BEAM AND PLASMA TECHNOLOGY FEP

- 1 Lighting
- 2 Kitchen
- 3 Indoor interior

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP

Winterbergstr. 28 01277 Dresden, Germany

Contact persons

Dr. Bert Scheffel Phone +49 351 2586-243 bert.scheffel@fep.fraunhofer.de

Dr. Torsten Kopte
Phone +49 351 2586-120
torsten.kopte@fep.fraunhofer.de

www.fep.fraunhofer.de

TRANSPARENT, SCRATCH-RESISTANT LAYERS ON LARGE AREA SUBSTRATES

Technology

- High-rate electron beam evaporation
- Plasma-activation by hollow cathode arc discharge (HAD process)
- Organic modification by combination with PECVD
- High deposition rates on large areas
 (50 ... 600 nm/s)
- High productivity low cost
- Low thermal load (plastic, e.g. PC, max. temperature < 130°C)
- Wet chemical cleaning of metals prior vacuum processing
- (Pulse) plasma pre-treatment
- Technology development to customized requirements
- Pilot production for metal strips, plastic films (300 mm width) and large sheets (500 mm × 500 mm) in large scale pilot plant MAXI

Applications

- Kitchen
- Indoor interior
- Architecture
- Automotive
- Rail-bound transportation
- Lighting
- Solar thermal absorber
- Photovoltaic

Substrates

- Materials:
- Plastics (e.g. polycarbonate),
- Metals (e. g. stainless steel),
- Glasses (e. g. float glass),
- Ceramics (e.g. tiles)
- Shape:
- Small, medium size and large area flat substrates (sheets, strips, films)
- Simple shaped 3D substrates

Characteristics

General:

PET

Float glass

Transparent, scratch-resistant layers on large area substrates from plastics, metals, glasses and ceramics.

The optical appearance of the surface will not be altered by coating.

Layers:

- Silica based (SiO_x) and alumina based (Al₂O₂) coatings
- Thickness 1 ... 10 µm
- Organic modification by incorporation of carbon
- Improved elasticity
- Incorporation of nano-crystalline Si in the SiO_x layer matrix for extremely high hardness

8 ... 10

Hardness of substrates and abrasion-resistant SiO, layers Substrate Hardness of the Hardness of the substrate [GPa] SiO_x layers [GPa] 0.11* Polycarbonate 2 ... 3 0.15* 2 ... 3 **PMMA** 0.18* 2 ... 3 8 ... 15 ca. 1 Ferritic steel (St 14) 8 ... 15 3 ... 4 High-alloy steel (X5 CrNi 18.10)

Hardness measurement by nano-indentation; * Ball indentation

ca. 6

Mechanical properties:

- High hardness (2 ... 15 GPa) compared to substrate (see table)
- High abrasion resistance (see graph, fig. 7)
- Excellent adhesion, even in the presence of moisture (plastic substrates)
- Low internal stress
- Elastic and plastic deformability up to 3%
- Stability against temperature cycling
- High corrosion resistance
- Low finger print sensibility

Optical properties:

- High transparency (k: 0.001 ... 0.01 @ 550 nm)
- High uniformity of layer thickness

- 4 Indoor interior
- 5 High abrasion resistance
- 6 Automotive

We focus on quality and the ISO 9001.