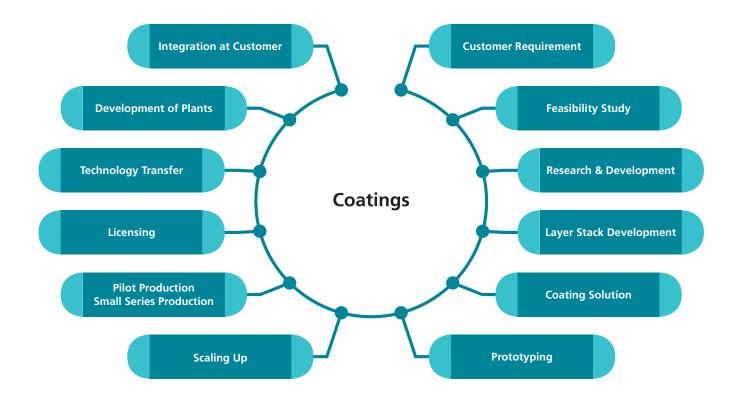


Fraunhofer Institute for Electron Beam and Plasma Technology FEP

Coatings

Research and Development:


Applications – Materials – Substrates – Technologies – Systems

Foreword

Coatings of the highest precision are required for numerous applications in optics, electronics, sensor technology, energy and medical technology, mechanical engineering and automotive technology. Fraunhofer FEP develops processes and technologies to apply, for example, electrical, optical, acoustic or magnetically effective coatings and layer systems precisely and homogeneously to large surfaces using vacuum processes. In addition to the high environmental compatibility, the advantage of our processes is the almost inexhaustible range of depositable layer materials, which exceeds that of conventional surface finishing processes by far.

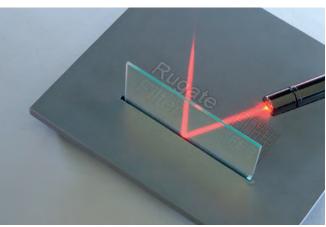
For our customers, we develop efficient technologies for the manufacture of innovative products whose functions are the combination of different layer properties is essential. Our services range from feasibility studies, layer stack development, small series coating and pilot production to the transfer of the technology into production based on high-performance components developed at Fraunhofer FEP. In addition, we are constantly expanding the range of substrate materials and coating technologies that we can use, thus advancing into new applications.

On the following pages you will find an excerpt of developed layers and coatings, presented from the perspective of the various subsequent fields of application that Fraunhofer FEP has realized in more than 25 years of research activity. These explanations are intended to give you an idea of the possibilities we can offer for you. Of course, all combinations and layer developments are adaptable with regard to materials, processes and customer- as well as application-specific conditions and parameters.

Optics and decoration

Applications	Materials	Substrates	Technologies
Antireflex (AR)/Antireflex-	Dielectrics: Al_2O_3 , Cr_2O_5 , MgO,	Glass, plastics, metal strips,	Unipolar or bipolar magnetron sputtering,
Antistatic (ARAS)	Nb ₂ O ₅ , SiO ₂ , Si ₃ N ₄ , SnO ₂ , Ta ₂ O ₅ ,	metal sheets	high-rate electron beam evaporation,
Electromagnetic shielding of	TiO ₂ , ZnO, ZrO ₂		plasma-activated electron beam evapo-
electronic devices	_		ration, anodic arc evaporation
Energy efficient construction	Transparent conductive oxides		
(low-E, solar control)	(TCO): ITO, IZO, ZnO-based TCO,		
Mirror coatings	TiO,-based TCO		
(highly reflective mirrors,	2		
baroque mirror coatings,	Metals: Ag, Al, Cr, Cu, Mo, Sn, Ta,		
blue mirrors)	_ Ti, Zr, TiN		
Decorative layers			
Optical filters for laser optics,	SiO ₂ , Si ₃ N ₄ , Ta ₂ O ₅ , TiO ₂ , Al ₂ O ₃ , HfO ₂ ,	Glass, plastics	Reactive pulse magnetron sputtering,
spectroscopy applications	Nb ₂ O ₅		high-rate PECVD
Anti-reflective coatings			
on eyeglass lenses			
Anti-counterfeiting labels,	SiO ₂ , TiO ₂ , Ag, Al	Polymer films,	Pulse magnetron sputtering, high-rate
Decorative foils		thin metal strips,	PECVD, high-rate electron beam evapo-
		flexible glass, membranes,	ration, plasma and ion surface treat-
		textiles, paper,	ment, slot die coating, electron beam
		radiation-curable lacquers	lacquer hardening

We develop your custom-fit, application-specific coating solution!«



Electronics/sensors

Applications	Materials	Substrates	Technologies
High-barrier and functional webs for	ZnSnO, TiO ₂ , Al ₂ O ₃ ,	Polymer films, thin metal	Pulse magnetron sputtering, high-rate
flexible and organic electronics	organics, radiation-	foils, flexible glass (thickness:	PECVD, high-rate evaporation, plasma and
Solar cells	curing lacquers,	50 μm 100/200 μm	ion surface treatment, slot die coating,
	ormocers		electron beam lacquer hardening, atomic
			layer deposition (ALD)
Piezoelectric applications:	Crystalline AlN	Silicon, steel, LiNbO ₃ ,	Reactive pulse magnetron sputtering,
 Microsystems (MEMS), BAW, SAW 	and AlScN layers	LiTaO ₃ , quartz	magnetron PECVD
 Electroacoustic devices 	with strong c-axis		
 Ultrasonic microscopy 	orientation		
 Piezoactuators and sensors 			
 Microenergy harvesting systems 			
Electrical insulation applications:	Al ₂ O ₃ , SiO ₂ , Si ₃ N ₄ ,	Silicon, steel, copper,	Reactive pulse magnetron sputtering,
 Sensors (including device-integrated) 	Al _x O _y N _z	aluminum, glass, ceramics	magnetron PECVD
 Microelectronics 			
 Photovoltaics 			
Heat dissipation components:	AIN, Al _x O _y N _z	Copper, aluminum	Reactive pulse magnetron sputtering,
 Laser diodes 			magnetron PECVD
 Cooling for electronics 			
 Thermoelectrics, peltier cooler 			
 Electronics development 			
Passivation, protective and barrier layers:	Al ₂ O ₃ , SiO ₂ , Si ₃ N ₄	Silicon, steel, plastics, glass	Reactive pulse magnetron sputtering,
 Sensors 			magnetron PECVD
 Electronic components 			
Electronic and MEMS components	SiO ₂ , TaN, HfO ₂	Silicon, ceramics, titanium,	Reactive pulse magnetron sputtering,
		LiNbO ₃ , LiTaO ₃ , covar	magnetron PECVD
Gas and humidity sensors	TiO ₂ , Fe, Ag, CuSn	Silicon, ceramics, glass	Reactive pulse magnetron sputtering,
			magnetron PECVD
Nultilayer for electrical insulation layers	Parylene	Glass, polymer films, metal	CVD at room temperature
with parylene		foil, silicon, thin glass, printed	
		circuit boards	

Corrosion/Scratch protection

Applications	Materials	Substrates	Technologies
Corrosion protection	Ti, Al, Cr, Cu, Sn, ZnMg, Zn Thickness: 10 μm	Steel, stainless steel, precoated steel, copper, aluminum and their alloys	Vacuum based, e.g. physical vapor deposition (PVD)
	Parylene	Glass, polymer film, metal foil, silicon	CVD at room temperature
Wear protection, friction reduction, scratch protection, corrosion protection	a-C, ta-C (hydrogen-free amorphous carbon layers)	Steel, stainless steel, carbide, tools, sheet steel	Plasma assisted electron beam evaporation
Transparent scratch protection	SiO _x , Al ₂ O ₃ Thickness: 1 10 μm radiation curing lacquers	Decorative films, decorative papers, high-pressure laminate (HPL) boards	Plasma assisted electron beam evapora- tion, electron beam varnish hardening

Energy conversion, transportation and storage as well as battery technology

Applications	Materials	Substrates	Technologies
Current arresters for batteries	Cu, Al	Polymer films,	Magnetron sputtering, electron beam evaporation,
and solar cells		silicon wafer	thermal evaporation
Thin-film photovoltaics	CdTe, CdS, Mo, CIGS,	Glass, metal foil	Close spaced sublimation (CSS), plasma-enhanced
	ТСО		close spaced sublimation (PECSS), magnetron sputtering,
			thermal evaporation, anodic arc evaporation
Crystalline photovoltaics	TCO, AIN, perovskite (for	Silicon wafer,	Magnetron sputtering, anodic arc evaporation,
	tandem cells), silicon thin	glass, steel	thermal evaporation, electron beam evaporation,
	film absorber		electron beam crystallization
Anode materials for Li-based	Silicon	Metal foil	Magnetron sputtering, high-rate electron beam evaporation
batteries			
Solid electrolytes	Lipon	Metal	Thermal evaporation, electron beam evaporation

Permeation barrier layers

Applications	Materials	Substrates	Technologies
Non-optical functional layers:	Dielectrics: Al ₂ O ₃ , Cr ₂ O ₅ , MgO,	Glass, plastics	Unipolar or bipolar magnetron
 Magnetic memories 	Nb ₂ O ₅ , SiO ₂ , Si ₃ N ₄ , SnO ₂ , Ta ₂ O ₅ ,		sputtering, anodic arc evaporation
 Scratch protection coatings on plastics 	TiO ₂ , ZnO, ZrO ₂		
 Surface metallization 			
 Hard coatings 	Transparent conductive oxides		
	(TCO): ITO, IZO, ZnO-based TCO,		
	TiO ₂ -based TCO		
	Metals: Ag, Al, Cr, Cu, Mo, Sn,		
	Ta, Ti, Zr		
Coating of flexible materials:	Al ₂ O ₃ , SiO ₂ , ZnSnO, SiN, Al,	Polymer films	Pulse magnetron sputtering, high-rate
 Barrier films for packaging 	radiation-curing lacquers,		PECVD (arc-PECVD), high-rate evapora-
 High-barrier for encapsulation of 	ormocere		tion, electron beam lacquer hardening,
electronic components (e.g. solar cells,			slot die coating
wearables, OLEDs,)			
Ultra-high barrier coatings in combina-	Parylene	Glass, polymer films,	CVD at room temperature
tion with ALD or sputter coatings		metal foil, silicon, thin	
 Barrier films and substrates 		glass, printed circuit	
 Direct encapsulation (3D) 		boards	
Corrosion protection	Radiation-curing lacquers	Polymers, wood, metal	Electron beam lacquer hardening
		sheet, papers, foils,	
		glass, ceramics, metal	

Parts, components, bulk materials

Applications, Functions		Materials	Substrates	Technologies	
Electrical function	Electrical conductivity, electromagnetic shielding	Metals, alloys, transparent conductive oxides	Plug contacts, chemical plant components, plastic housing	Electron beam evaporation, pulse magnetron sputtering, anodic arc evaporation	
	Electrical isolation	Metal- and semiconductor oxides	Additively manufactured contact structures	Electron beam evaporation, pulse magnetron sputtering	
Thermal function	Thermal conductivity	Metals	Heat storage granules	Thermal evaporation	
	Thermal insulation	Stabilized ZrO ₂	Turbine blades	Electron beam evaporation	
Chemical barrier function	Corrosion protection	Aluminium-based, Cr, CrN	Rivet connectors, structural components in aviation	Thermal evaporation, Pulse magnetron sputtering	
Mechanical protec- tion function	Wear protection	Hard coatings	Tools, transmission small parts	Pulse magnetron sputtering	
	Friction reduction	Metal alloys (AlSn base)	Plain bearings	Electron beam evaporation, pulse magnetron sputtering, high-rate PECVD	
		Carbon based materials	Automotive and mechanical engineering components		
	Scratch protection	Metal nitrides	Commodities	Pulse magnetron sputtering	
		Al ₂ O ₃ , Si ₃ N ₄	Glass components		
Decorative functions	Metallic looks	Metals	Plastic components, sanitary pipes	Pulse magnetron sputtering	
	Body colors	Metal nitrides	Fittings, spectacle frames	Pulse magnetron sputtering	
	Interference colors	Metal oxides	Medical instruments	Pulse magnetron sputtering	
Other	Specific optical function	Solar absorber layer systems	Solar collector tubes	Pulse magnetron sputtering	
functions	Photoactivability, photocatalytic function	Titanium oxide	Dental implants	Pulse magnetron sputtering	

Biomedical applications

Applications	Materials	Substrates	Technologies
Biocompatibility for packaging and encapsulation	Parylene	Glass, thin glass, polymer film, metal foil, silicon	CVD at room temperature
Biocompatibility Biofunctionality	ITO, ZnO:Al, AZO, TiO ₂ , Ag, Cu	Plastics, metals, thermolabile mate- rials, organic materials and fabrics, ceramics, textiles, hydrogels, electro-	Electron beam treatment, plasma treatment, vacuum-based processes for thin film deposition, roll-to-roll coating
borunctionality		nic components, polymer films, glass	of flexible materials
Antimicrobial coatings	Ag, Cu, Ag & Cu, TiO2,doped TiO2		
Electron beam based grafting			

Other functional coatings

Applications	Materials	Substrates	Technologies
Hard coatings	TiN, TiC, WC, Al ₂ O ₃ , a-C(:H)(:Ti/W)	Metal sheets and strips	Pulse magnetron sputtering, plasma-assisted electron beam evaporation
Electrically conductive	Al, Cu, Sn, Mo	Metal sheets and strips	Pulse magnetron sputtering, plasma-assisted electron beam evaporation
Solderable and weldable	Cu, Sn, Si	Metal sheets and strips	Pulse magnetron sputtering, plasma-assisted electron beam evaporation
Photocatalytic	TiO ₂ , TiO _X N _Y	Metal, glass, ceramics, plastics	Reactive pulse magnetron sputtering, plasma-assisted electron beam evaporation
Photo-induced superhydrophilic coating	TiO ₂ , TiO _X N _Y	Silicon, ceramics, glass, metal, lithium niobate, lithium tantalate	Reactive pulse magnetron sputtering, plasma-assisted electron beam evaporation
Functional coatings for electroacoustic components	SiO ₂ , TaN, F:SiO ₂ , AIN, AlScN		Reactive pulse magnetron sputtering, magnetron PECVD
Substrate smoothing, Laser stop layers	Parylene	Silicon	CVD at room temperature

Pre-treatment for coating

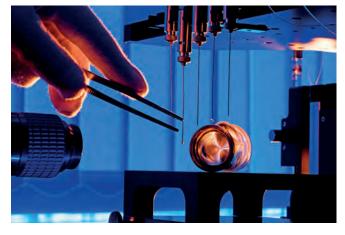
In order to be able to coat substrates effectively, it is usually necessary and useful to pretreat the surfaces. Fraunhofer FEP has many years of expertise in various processes for pre-treatment or surface functionalization, which create the basis for high-quality coating and layer adhesion.

Cleaning technologies

A coordinated cleaning technology is essential here so that the coating systems can be applied in an adhesive manner. Cleaning is therefore an important step in the value chain, which forms the basis for minimizing rejects, reducing costs and manufacturing high-quality products. A wide variety of impurities, in some cases down to atomic scales, as well as different requirements for the surfaces demand a range of different cleaning processes in order to achieve optimum results.

At Fraunhofer FEP, this range includes, among other things, wet chemical fine or ultra-fine cleaning for metallic components or precision parts made of glass and plastic, plasma cleaning for components made of metal and plastic in a vacuum, local functional surface cleaning with electron beam in vacuum, and sterilization, disinfection and inactivation with accelerated electrons.

Surface functionalization


Furthermore, Fraunhofer FEP is researching and working on surface functionalization. Here, accelerated, low-energy electrons are used to specifically treat the relevant surfaces and generate, for example, antibacterial effects or self-cleaning surfaces. Electron beam treatment leads, for example, to an adjustment of the wettability of the surface (surface hydrophilicity). In this way, the interaction of the surface with the environment can be influenced in a targeted manner.

Electron beam hardening

A special type of surface treatment is the hardening of suitable ferrous materials with the electron beam. In this process, a focused, high-frequency electron beam deflected over the workpiece surface leads to rapid, local heating of the material. The penetration depth can also be precisely controlled. The high heat conduction into the surrounding material then forces a high cooling rate without additional coolant (self-quenching), which leads to hardening of this surface layer in suitable materials. This allows local functional surfaces with excellent wear properties to be produced.

Surface smoothing

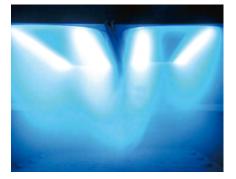
In addition, the electron beam can be used to smooth rough surfaces of many metallic components and thus prepare them for coating. The process is thus particularly suitable for the post-processing of additively manufactured parts. The active principle is that local energy input causes a momentary surface melting. The resulting melt immediately solidifies again, with the surface tension leading to a leveling of the height differences. With a suitable choice of parameters, smoothing takes place homogeneously over a wide area and, as far as possible, without material removal.

Technologies/Processes

Electron beam technology

Thanks to our many years of expertise, we are able to utilize accelerated electrons in the energy range of 10 – 300 keV to apply thermal, chemical, and biological effects in a wide range of technological applications. Our strength is developing and delivering electron-beam technologies up through full industrial readiness. One unique selling proposition is the combination of technological and technical process developments and the development of special electron beam sources from a single source.

Plasma surface technology



Plasma-assisted coating processes allow the production of customized coatings for many areas of application. Our strength lies in qualifying these plasma-assisted coating processes for industrial production and the coating of large surfaces.

The core competence comprises the PVD processes of plasma-activated high-rate evaporation and pulse magnetron sputtering as well as PECVD processes for plasmaactivated chemical vapor deposition with various high-performance plasma sources. A key unique selling point is the combination of extremely dense plasmas with extremely high deposition rates for the economical deposition of high-quality coatings.

The combination of cost-effectiveness with precision in terms of process control and coating properties opens up new applications. For these coating processes, we also develop the cleaning processes and plasma pre-treatments required to ensure layer adhesion.

Sputter technology

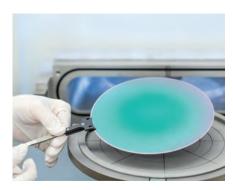
Sputter technology at Fraunhofer FEP is a highly developed method for coating materials. By applying thin layers through cathode sputtering, surface properties such as hardness, corrosion resistance, and optical characteristics can be enhanced. This technique is utilized across various industries to improve the performance and durability of products. Fraunhofer FEP employs advanced sputtering methods to develop innovative solutions for complex coating requirements.

Substrates

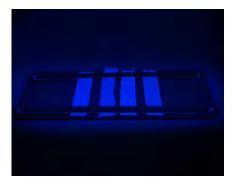
Metallic sheets and strips

Bulk material and 3D components Flexible films

Wafer


Ultra-thin glass

Seeds (treatment)



Tissues and textiles

Cultural heritage (decoating)

Contact

Fraunhofer Institute for Electron Beam and Plasma Technology FEP Winterbergstr. 28 01277 Dresden, Germany

Contact person Annett Arnold, M. Sc. Phone +49 351 2586-333 annett.arnold@fep.fraunhofer.de

www.fep.fraunhofer.de

Follow us!

We focus on quality and the ISO 9001.

Image credits

-

Title: Jürgen Lösel Thomas Ernsting: 9L Fraunhofer FEP: 4R, 5R, 6L, 7R, 10T, 10M, 10B, 11TL, 11TM, 11MM, 11BL Jan Hosan: 6R, 11TR Finn Hoyer: 4L, 7L, 11BR iStockphoto.com/fhgfep: 11BM Jürgen Lösel: 3R, 9R, 11ML Pixabay: 5L Anna Schroll: 11MR Janek Wieczoreck: 3L, 7R, 8L, 8R